

Sunnyside Cogeneration Associates

P.O. Box 10, East Carbon, Utah 84520 • (435) 888-4476 • Fax (435) 888-2538

November 26, 2012

Mr. Keith Eagan Division of Water Quality 195 North 1950 West Salt Lake City, Utah 84116

RE: Sunnyside Cogeneration Associates (SCA) Phase III Ash Landfill Construction & Reclamation Report Ground Water Permit No. UGW070002

Dear Mr. Eagan:

This report addresses terraces five and six of SCA's Phase III Ash Landfill in accordance with the requirements of Ground Water Permit No. UGW070002, Part II.D.2.c.

On May 22, 2012, permeability samples of the cover material were taken from three different locations on terraces five and six of the Phase III landfill. Ash compaction tests were also performed using a nuclear density gauge at six different locations on terraces five and six of the Phase III landfill. All test results were well within permit requirements. (See attachments).

On November 16, 2012, terraces five and six of the Phase III landfill were hydro mulched and seeded with a certified seed mix. (See attachment and pictures).

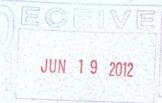
If you have any questions or if further clarification is needed please contact Rusty Netz or myself at (435) 888-4476.

Thank You. 1

Richard Carter Agent for Sunnyside Cogeneration Associates

C.c. Rusty Netz Plant File

COVER MATERIAL PERMEABILITY RESULTS AND ASH MATERIAL COMPACTION RESULTS



 Intermountain GeoEnvironmental Services, Inc. 12429 South 300 East, Ste 100, Draper, UT 84020
~ T: (801) 748-4044 ~ F: (801) 748-4045

4153 Commerce Drive, Salt Lake City, UT 84107 ~ T: (801) 270-9400 ~ F: (801) 270-9401

June 13, 2012

Sunnyside Cogeneration #1 Power Plant Road Sunnyside, UT 84539 Attn: Rusty Netz

IGES Project No. 00573-002

RE: Ash Disposal Soils – Field and Laboratory Testing Results Sunnyside Cogeneration Facility Sunnyside, Utah

Mr. Netz,

As requested, IGES performed field and laboratory testing on the ash disposal pile for the Sunnyside Cogeneration facility in Sunnyside, Utah. The suite of field and laboratory testing was performed to assess the density of the ash and the hydraulic conductivity of cover soils at the site. The general site location is shown on the *Site Vicinity Map* (Plate 1) attached to this report.

The scope of work completed for this investigation was performed in accordance with our proposal and signed authorization dated May 11, 2012. The following paragraphs present the results of the compaction and hydraulic conductivity testing.

Compaction

On May 22, 2012, soil density tests were performed on the ash using a nuclear density gauge. The test locations are shown on the *Site Map* (Plate 2) attached to this letter. The tests were performed at two different lifts on the south side of the current ash disposal pile. One bulk sample was taken of the ash and returned to the laboratory. A standard compaction test as performed in accordance with ASTM D-698 and attached to the end of this letter. Table 1 below gives the compaction testing results:

Location	Lift	Dry Density (lb/ft ³)	Moisture Content (%)	Optimum Moisture Content (%)	Maximum Dry Density (lb/ft ³)	Relative Density (% of Maximum)	
1	Lift 1	74.5	34.5			109.9	
1	Lift 2	75.3	36.0			111.1	
2	Lift 1	76.1	33.9	45.8 67.8	67.0	112.2	
2	Lift 2	76.7	34.2		45.8 07.8		113.1
3	Lift 1	75.2	34.1			110.9	
	Lift 2	75.6	35.0		- 11 Jan 199	111.5	

Table 1. Density Testing Results - Sunnyside Cogeneration Facility

f d d S 0 a C h а 0 е a n q n W r

Hydraulic Conductivity

Undisturbed soil samples were taken of the cover soil on the south side of the current ash disposal pile. Locations of the samples taken are shown on the *Site Map* (Plate 2). Back pressure permeability tests were performed on each of the three samples taken in accordance with ASTM D-5084. Table 2 below lists results of the backpressure permeability tests. According to the test results, the permeability of the cover soils ranged from 2.0E-05 to 9.8E-06 cm/s.

Sample	Sample Type	Dry Density (lb/ft ³)	Moisture Content (%)	Total Backpressure (lb/in ²)	Hydraulic Conductivity (cm/sec)	
1	Undisturbed	99.1	8.0	33	6.2E-05	
2	Undisturbed	106.2	8.4	36	2.0E-05	
3	Undisturbed	97.7	6.5	36	9.8E-06	

Table 2. Backpressure Permeability Test Results

Limitations

The recommendations contained in this letter are based on a limited field exploration and laboratory testing. It is likely that variations in the soil conditions could exist between the points explored. If any conditions are encountered at the site that is different from those described in this letter, IGES should be notified so the revisions can be made as necessary. The field and laboratory testing were performed in accordance with the accepted standards of practice at the time this letter was written. No warranty, expressed or implied, is therefore made.

We appreciate the opportunity to provide you with our services. If you have any questions, please contact the undersigned at your convenience at (801) 270-9400.

Respectfully submitted, **IGES, Inc.**

Bradley M. Johnson, P.E. Project Engineer

Attachments:

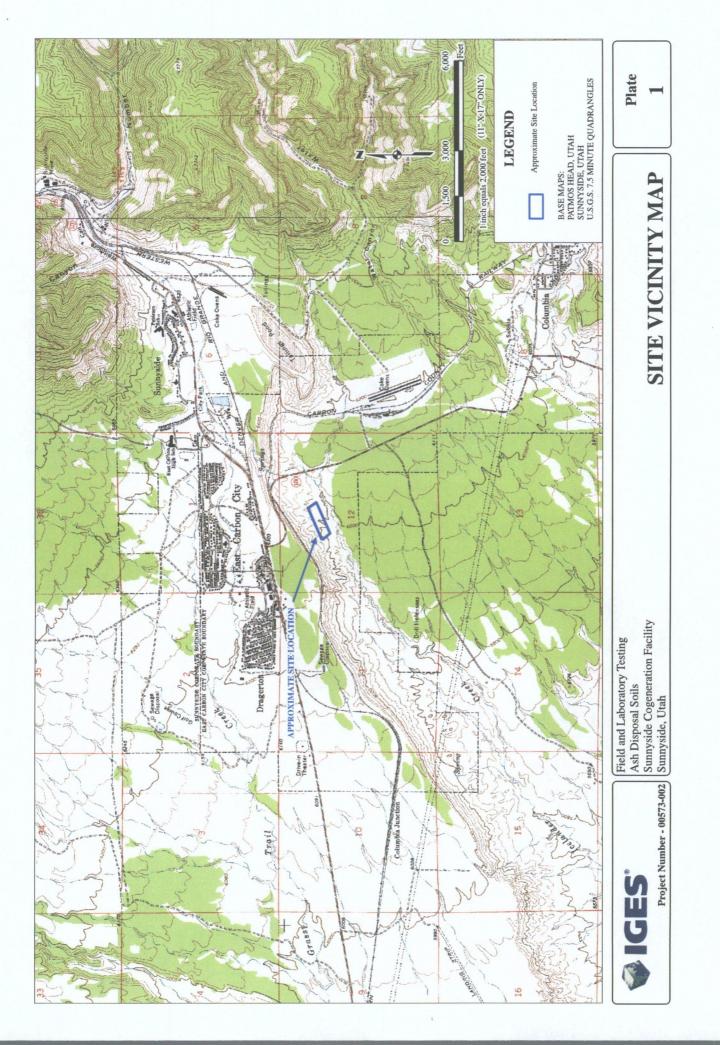
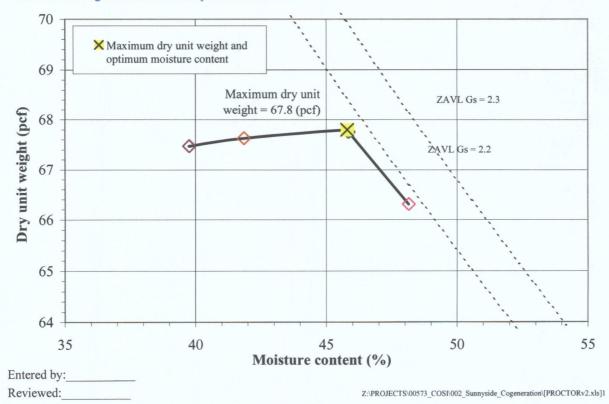

Davey L. Breinholt, P.E. Project Engineer

Plate 1 – Site Vicinity Map Plate 2 – Site Map Standard Proctor (Compaction) Results Backpressure Permeability Results Density Testing Results – Field Data Sheet

Copyright © 2012 IGES, Inc.

2

L00573-002


Laboratory Compaction Character	ristics of Soil	GES
(ASTM D698 / D1557)		© IGES 2004, 2012
Project: Sunnyside Cogeneration	Boring No.:	
No: 00573-002	Sample:	Sample #1
Location: Sunnyside, UT	Depth:	0.5'
Date: 6/8/2012	Sample Description:	Grey ash
By: DKS	Engineering Classification:	Not requested
	As-received moisture content (%):	Not requested
Method: ASTM D698 B	Preparation method:	Moist
Mold Id. Inc 2	Rammer:	Mechanical-circular face
Mold volume (ft^3): 0.0332	Rock Correction:	No * See results below

Optimum moisture content (%): 45.8 Maximum dry unit weight (pcf): 67.8

Maximum ury unit weigi	n (per).	07.0	The Arel and a second	1	
Point Number	+22%	+24%	+28%	+30%	
Wt. Sample + Mold (g)	5585.4	5609.9	5653.5	5644.7	
Wt. of Mold (g)		4164.5	4164.5	4164.5	
Wet Unit Wt., γ_m (pcf)	94.3	95.9	98.8	98.2	
Wet Soil + Tare (g)	592.58	636.2	600.46	622.36	
Dry Soil + Tare (g)	460.26	490.1	451.74	478.99	
Tare (g)	127.42	140.91	127.33	181.18	
Moisture Content, w (%)		41.8	45.8	48.1	
Dry Unit Wt., γ_d (pcf)	67.5	67.6	67.8	66.3	

Comments:

Water was leaking out of the mold on point number +30%

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible

Wall Permeameter, Method C (ASTM D5084)

Project: Sunnyside Cogeneration No: 00573-002 Location: Sunnyside, UT Date: 6/12/2012 By: JDF

Boring No.: Sample: Location 1 Depth: 0.5'

Sample Description: Brown sandy clay Sample Type: Undisturbed

	Initial (o)	Final (f)	
Sample Height, H (in)	2.916	2.913	
Sample Diameter, D (in)	2.406	2.40	
Sample Length, L (cm)	7.407	7.400	
Sample Area, A (cm ²)	29.332	29.197	
Sample Volume, V (cm^3)	217.26	216.05	
Wt. Rings + Wet Soil (g)	1132.24	431.78	
Wt. Rings (g)	759.56	0	
Wet Unit Wt., γ_m (pcf)	107.1	124.8	
Wet Soil + Tare (g)	554.4	543.86	
Dry Soil + Tare (g)	528.94	457.09	
Tare (g)	211.73	112.18	
Weight of solids, Ws (g)	344.99	344.99	
Moisture Content, w (%)	8.03	25.16	
Dry Unit Wt, γ_d (pcf)	99.1	99.7	
Void ratio, e, for assumed Gs	0.67	0.67	
Saturation (%), for assumed Gs	31.8	100 ^a	
Average K ^b (cm/sec)			

Gs	2.65	Assumed
Cell No.	1	
Station No.	1	
Permeant liquid used	Deaired W	ater
Total backpressure (psi)	33	
Effective horiz. consolidation stress (psi)	3	
Effective vert. consolidation stress (psi)	3	
	Initial (o)	Final (f)
B value	0.70	0.97
External Burette (cm ³)	17.80	24.40
Cell Pressure (psi)	0.0	36.0
Backpressure bottom (psi)	33.0	
Backpressure top (psi)	33.0	
System volume coefficient (cm ³ /psi)	0.150	
System volume change (cm ³)	5.39	
Net sample volume change (cm ³)	-1.21	
Bottom burette ground length, l_b (cm)	82.00	
Top burette ground length, l_t (cm)	82.1	
Burette area, a (cm^2)	0.197	
Conversion, reading to cm head (cm/rd)	5.06	

^a Saturation set to 100% for phase calculations ^b K corrected to 20°C

Elapsed time (sec)	Bottom Burette (cm ³)	Top Burette (cm ³)	h ₁ (cm)	h ₂ (cm)	K (cm/sec)	Temp (°C)	Visc. Ratic R _f	K ^b (cm/sec
240.0	1.66 3.16	8.26 6.74	33.30	18.01	6.4E-05	22.0	0.95	6.1E-05
120.0	3.16 3.66	6.74 6.24	18.01	12.95	6.9E-05	22.0	0.95	6.5E-05
120.0	0.00 1.29	10.00 8.70	50.50	37.39	6.3E-05	22.0	0.95	6.0E-0
120.0	1.29 2.28	8.70 7.70	37.39	27.33	6.5E-05	22.0	0.95	6.2E-0
120.0	2.28 3.03	7.70 6.95	27.33	19.74	6.8E-05	22.0	0.95	6.4E-0
						÷		

Entered by:_____ Reviewed:

Z:\PROJECTS\00573_COSI\002_Sunnyside_Cogeneration\[KBPFRHv1.xls]1

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible

Wall Permeameter, Method C (ASTM D5084)

Project: Sunnyside Cogeneration No: 00573-002 Location: Sunnyside, UT Date: 6/12/2012 By: JDF

Boring No.: Sample: Location 2 Depth: 0.5'

Sample Description: Brown sandy clay Sample Type: Undisturbed

	Initial (o)	Final (f)
Sample Height, H (in)	2.933	2.936
Sample Diameter, D (in)	2.402	2.41
Sample Length, L (cm)	7.450	7.458
Sample Area, A (cm ²)	29.235	29.396
Sample Volume, V (cm^3)	217.80	219.25
Wt. Rings + Wet Soil (g)	1161.15	445.54
Wt. Rings (g)	759.56	0
Wet Unit Wt., ym (pcf)	115.1	126.9
Wet Soil + Tare (g)	478.17	581.61
Dry Soil + Tare (g)	454.9	507.12
Tare (g)	179.2	140.31
Weight of solids, Ws (g)	370.33	370.33
Moisture Content, w (%)	8.44	20.31
Dry Unit Wt, γ_d (pcf)	106.2	105.4
Void ratio, e, for assumed Gs	0.56	0.54
Saturation (%), for assumed Gs	40.0	100 ^a
Average K ^b (cm/sec)	2.0H	E-05

^a Saturation set to 100% for phase calculations ^b K corrected to 20°C

Gs	2.65	Assumed
Cell No.	5	
Station No.	2	
Permeant liquid used	Deaired W	ater
Total backpressure (psi)	36	
Effective horiz. consolidation stress (psi)	3	
Effective vert. consolidation stress (psi)	3	
	Initial (o)	Final (f)
B value	0.90	0.97
External Burette (cm ³)	12.30	17.10
Cell Pressure (psi)	0.0	39.0
Backpressure bottom (psi)	36.0	
Backpressure top (psi)	36.0	
System volume coefficient (cm ³ /psi)	0.160	
System volume change (cm ³)	6.25	
Net sample volume change (cm ³)	1.45	
Bottom burette ground length, l _b (cm)	81.99	
Top burette ground length, l_t (cm)	81.97	
Burette area, a (cm^2)	0.197	
Conversion, reading to cm head (cm/rd)	5.06	

Elapsed	Bottom Burette (cm ³)	Top Burette (cm ³)	h ₁	h ₂	K	Temp	Visc. Ratio		
time (sec)			(cm)	(cm)	(cm/sec)	(°C)	R _f	(cm/sec)	
120.0	0.00	10.00	50.62	45.86	2.1E-05	21.9	0.95	2.0E-05	
	0.48	9.54	50.02	43.00	2.1E-05	21.9	0.95	2.0E-03	
120.0	0.0 0.48 9.54 45.86 41.56	2.1E-05	21.9	0.95	2.0E-05				
120.0	0.90	9.11	45.80	41.30	2.1E-03	21.9	0.93	2.0E-03	
120.0	0.90	9.11	41.56	27 57	7.57 2.1E-05	21.9	0.95	2.0E-05	
120.0	1.30	8.72		41.30 37.37				2.0E-03	
120.0	1.30	8.72	27.57	37.57	34.02	2.1E-05	21.9	0.05	2.0E-05
120.0	1.65	8.37	37.37	34.02	2.1E-05	21.9	0.95	2.0E-03	

Entered by:_____ Reviewed:

Z:\PROJECTS\00573_COSI\002_Sunnyside_Cogeneration\[KBPFRHv1.xls]2

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible

Wall Permeameter, Method C (ASTM D5084)

Project: Sunnyside Cogeneration No: 00573-002 Location: Sunnyside, UT Date: 6/12/2012 By: JDF

Boring No.: Sample: Location 3 Depth: 0.5'

Sample Description: Brown sandy clay Sample Type: Undisturbed

	Initial (o)	Final (f)	
Sample Height, H (in)	2.968	2.979	
Sample Diameter, D (in)	2.418	2.44	
Sample Length, L (cm)	7.539	7.567	
Sample Area, A (cm ²)	29.626	30.175	
Sample Volume, V (cm^3)	223.34	228.34	
Wt. Rings + Wet Soil (g)	1131.96	441.35	
Wt. Rings (g)	759.53	0	
Wet Unit Wt., γ_m (pcf)	104.1	120.7	
Wet Soil + Tare (g)	467.98	558.56	
Dry Soil + Tare (g)	447.17	467.57	
Tare (g)	127.42	120.51	
Weight of solids, Ws (g)	349.67	349.67	
Moisture Content, w (%)	6.51	26.22	
Dry Unit Wt, γ_d (pcf)	97.7	95.6	
Void ratio, e, for assumed Gs	0.69	0.69	
Saturation (%), for assumed Gs	24.9	100 ^a	
Average K ^b (cm/sec)	9.8E-06		

Gs	2.65	Assumed
Cell No.	3	
Station No.	3	
Permeant liquid used	Deaired w	ater
Total backpressure (psi)	36	
Effective horiz. consolidation stress (psi)	3	
Effective vert. consolidation stress (psi)	3	
	Initial (o)	Final (f)
B value	0.83	0.97
External Burette (cm ³)	17.70	18.60
Cell Pressure (psi)	0.0	39.0
Backpressure bottom (psi)	36.0	
Backpressure top (psi)	36.0	
System volume coefficient (cm ³ /psi)	0.151	
System volume change (cm ³)	5.90	
Net sample volume change (cm ³)	5.00	
Bottom burette ground length, l _b (cm)	82.10	
Top burette ground length, l_t (cm)	81.9	
Burette area, a (cm^2)	0.197	
Conversion, reading to cm head (cm/rd)	5.06	

^a Saturation set to 100% for phase calculations ^b K corrected to 20°C

Elapsed time (sec)	Bottom Burette (cm ³)	Top Burette (cm ³)	h ₁ (cm)	h ₂ (cm)	K (cm/sec)	Temp (°C)	Visc. Ratic R _f	K ^b (cm/sec
120.0	0.18 0.40	9.57 9.32	47.71	45.34	1.1E-05	22.1	0.95	1.0E-05
120.0	0.40 0.61	9.32 9.10	45.34	43.16	1.0E-05	22.1	0.95	9.6E-06
120.0	0.61 0.81	9.10 8.90	43.16	41.14	9.9E-06	22.1	0.95	9.4E-06
120.0	0.81 1.00	8.90 8.69	41.14	39.11	1.0E-05	22.1	0.95	9.9E-0
120.0	1.00 1.19	8.69 8.49	39.11	37.14	1.1E-05	22.1	0.95	1.0E-05

Entered by:_____ Reviewed:

Z:\PROJECTS\00573_COSI\002_Sunnyside_Cogeneration\[KBPFRHv1.xls]3

12429 South 300 East, Suite 100 Ph. 748-4044 Fax 748-4045 Draper, UT 84020

DENSITY OF SOILS/AGGREGATES - NUCLEAR METHOD

(ASTM D2922-01 AASHTO T310-02)

SW=siDEWALK	WER LINE RD=ROADWAY BFG=BELOW FIN	RM DRAIN FTG=FDOTINGS SG=SUB-GRADE	
KEY: WTL=WATER	SWL=SEWER LINE	SD=STORM DRAIN	
	NATER	SW-sidewalk RD-ROADWAY	SW=SIDEWALK SW=SIDEWALK RD=ROADWAY FTG=FCOTINGS

6	200-		
RIMR/S	00573	MMIT	
DATE: S	IGES JOB #:	OPERATOR:	

ELEV. KEY:	TEST MODE:
BSG=BELOW SUB-GRADE	B=BACKSCATTER
BFG=BELOW FINISH-GRADE	DT=DIRECT TRANS
SG=SUR-GRADE	

SG=SUB-GRADE FG=FINISH GRADE

SW=SIDEWALK RD=ROADWAY FTG=FOOTING5 BP=BUILDING PAD

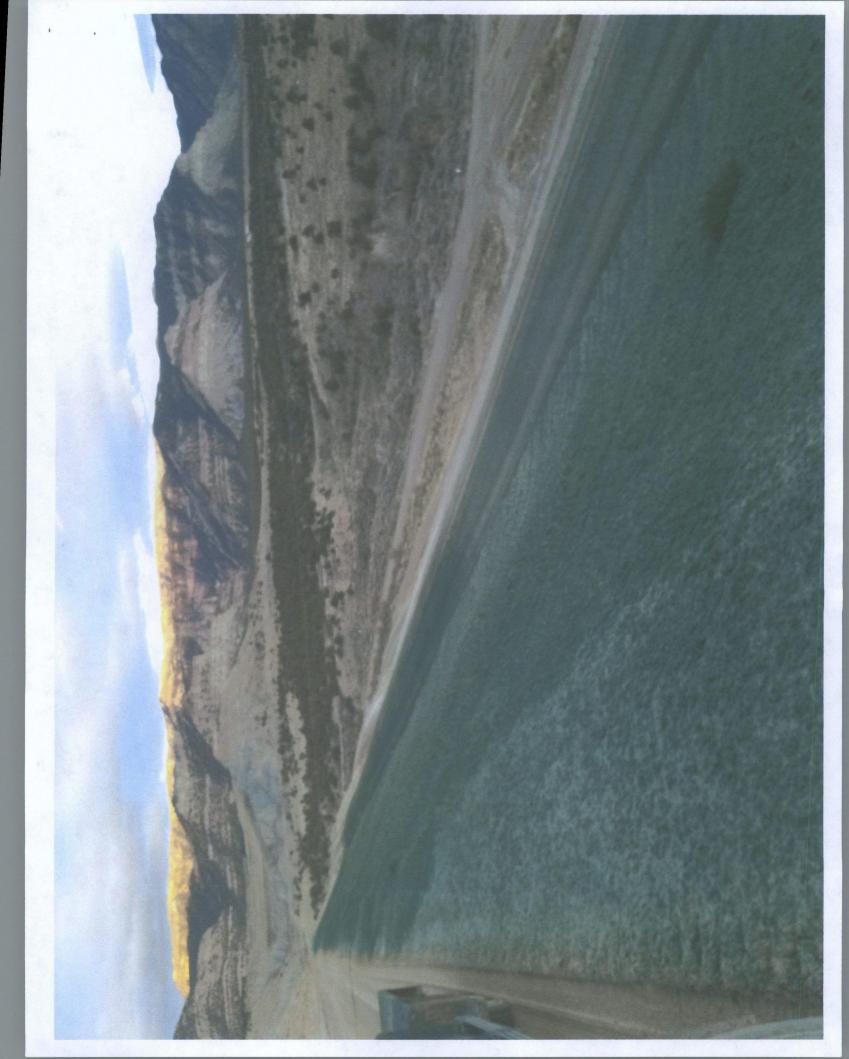
CG=CURB&GUTTER

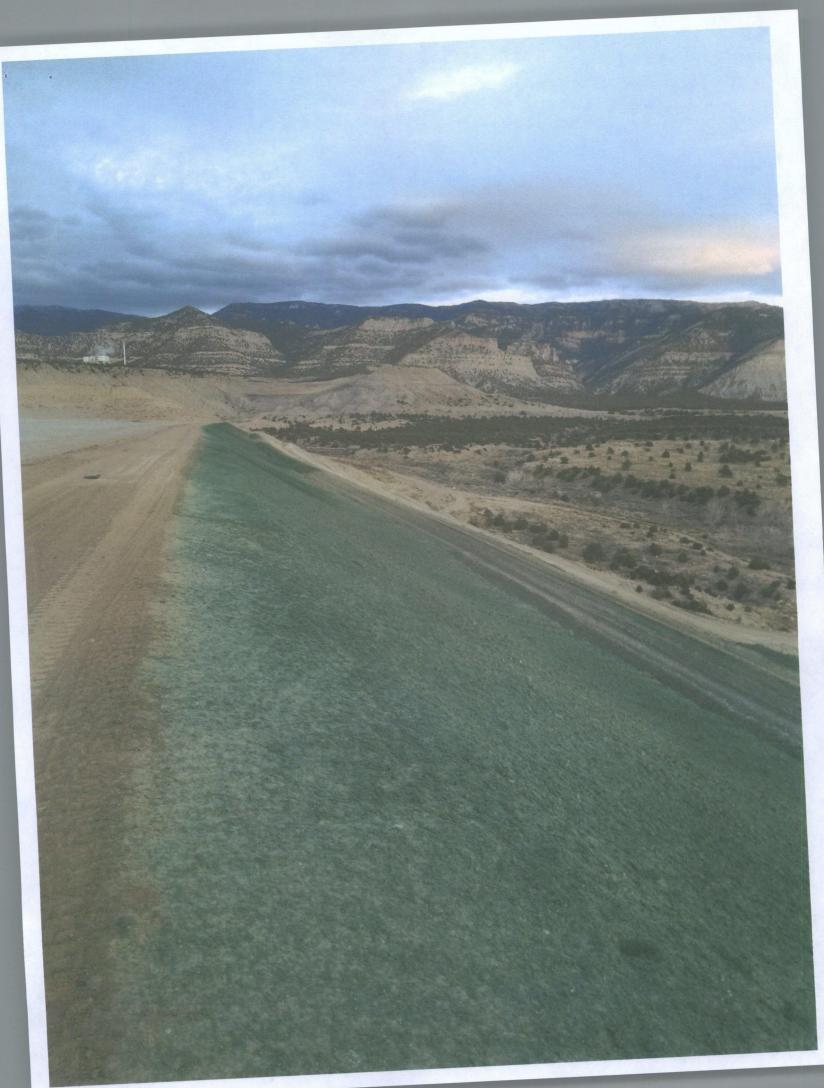
ACKSCATTER DIRECT TRANSMISSION

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				PROCTOR	DENSITY	DENSITY	CONTENT	DENSITY	OPTIMUM MOISTURE	×	%	RETEST	ADDBOTVIAMATE TEET I OF ATION	VIGHAL SOIL DESCRIPTION
The second secon	1.11	-		CURVE #	[Do. 2	74.5	SHE	linal	101	COMP.	95	MELOLO	VPS+ Side	
10 1019 76.1 33.9 13 102 75.3 34.1 10 102.8 75.3 34.1 10 102.1 75.6 35.0	C.1.	-	14		102.4	75.2	36,0						*	
10 101 76.1 33.9 13 102 76.7 34.5 10 102.8 75.3 34.1 10 102.1 75.6 35.0														
13 103.17 34.2 4.3 103.1 75.6 35.0 103.1 75.6 35.0 103.1 75.6 35.0 103.1 103.1 75.6 35.0 103.1 103.1 75.6 103.1 10	Ter		10		101.9	76.1	33.9						Middle.	
V 13 100.55 334.1 V 13 100.1 75.6 35.0	6.6		14		670	7.91	54.2						7	
75.6 35.0														
T5.6 35.0 V	TiSi		0		100,8	5.2 P	34.						East Side	
	6 27	>	()		1.601	75.6	35.0				>		L L	7

RUSTY Netz RESULTS REPORTED TO:

GUAGE:		
MAKE:	Troxler	
MODEL No.: 3430	.: 3430	
SERIAL No.: 60912	: 60912	
LAST CALIE	LAST CALIBRATION DATE:	
STANDARE	STANDARD COUNTS:	


<u>www.iGESINC.COM</u> Geotechnical & GeoEnvironmental Engineering


Page 1

Bluffdale Density Form.xls

Page 11 of 16

LANDFILL PICTURES AND SEED CERTIFICATION

			0.08% Cron	6 03% Inert		0.02 /0 4000	No Noxious Found		Oldest Test Date: 9/28/2011			Native Western Plants 2076 East 8900 South Price, UT 84501	PO #Dave B. Lot #25805 Net Weight 50 Lbs.
	Germ/Harð	82 %	42 %	87 %	92 %	92 %	96 %	53 %	29%	80 %	94 %	F Y A	
	Origin	00	UT	Canada	SD	Canada	UT		Utah	UT	UT		
States States and States	Purity Mixture Contents Ash Pile Mix	15.02% Yellow Blossom Sweet Clover, VNS	14.66% Fourwing Saltbrush, VNS	14.16% Crested Wheatgrass, Hycrest	13.39% Intermediate Wheatgrass, Oahe	13.39% Alfalfa, Ladak	6.41% Annual Sunflower, VNS	5.81% Shadscale Saltbrush, VNS	3.90% Rubber Rabbitbrush, VNS	3.85% Palmer Penstemon, VNS	3.28% Rocky Mountain Beeplant, VNS		ASH Pile

DWQ-2012-003837 11/23/2012

Page 16 of 16